Funds to purchase the X-ray diffraction equipment were provided by NSF Grant CHE 87-11307.

References

Berg, J. M. \& Holm, R. H. (1982). Iron-Sulfur Proteins, Vol. 4, edited by T. G. Spiro, pp. 1-66, and references therein. New York: John Wiley.
Calderazzo, F., Pampalon, G., Vitali, D., Pelizzl, G., Collamati, I., Frediani, S. \& Serra, A. M. (1980). J. Organomet. Chem. 191, 217-242.
Gritzner, G., Linert, W. \& Gutmann, V. (1981). J. Inorg. Nucl. Chem. 43, 1193-1199.
International Tables for X-ray Crystallography (1974). Vol. IV, pp. 99, 149. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Molecular Structure Corporation (1985). TEXSAN-TEXRAY. Structure Analysis Package. MSC, 3200A Research Forest Drive, The Woodlands, TX 77381, USA.
Müller, A. \& Schladerbeck, N. (1985). Chimia, 39, 23-24.
Müller, A., Schladerbeck, N. \& Bögge, H. (1985). Chimia, 39, 24-25.
Reiff, W. M., Witten, E. H., Mottle, K., Brennan, T. F. \& Garafalo, A. R. (1983). Inorg. Chim. Acta, 77, L27-L30.
Rutchik, S., Kim, S. \& Walters, M. A. (1988). Inorg. Chem. 27, 1513-1515.
Sheldrick, G. M. (1985). SHELXS86. In Crystallographic Computing 3, edited by G. M. Sheldrick, C. Krüger \& R. Goddard, pp. 175-189. Oxford Univ. Press.
Stremple, P., Baenziger, N. C. \& Coucouvanis, D. (1981). J. Am. Chem. Soc. 103, 4601-4603.
Walker, N. \& Stuart, D. (1983). Acta Cryst. A39, 158-166.

Acta Cryst. (1989). C45, 1736-1738

Structure of Ethyl 4-Methyl-2-oxo-3-phenyl-2,3-dihydro-5-benzofurancarboxylate

By R. Ghosh and P. Roychowdhury*
Department of Physics (X-ray Laboratory), University College of Science, 92 Acharys Prafulla Chandra Road, Calcutta-700 009, India
and P. Maulik
Biophysics Division, Department of Medicine, Boston Univeristy School of Medicine, Boston, MA 02118, USA

(Received 13 February 1989; accepted 29 March 1989)

Abstract

C}_{18} \mathrm{H}_{16} \mathrm{O}_{4}, M_{r}=296.322\), monoclinic, $\mathrm{C} 2 / c$, $a=22.92$ (3), $\quad b=8.06$ (2), $\quad c=22.72$ (2) $\AA, \quad \beta=$ $133 \cdot 24$ (3) ${ }^{\circ}, \quad V=3057.61$ (3) $\AA^{3}, \quad Z=8, \quad D_{m}=1 \cdot 30$, $D_{x}=1.29 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda($ Mo $K \alpha)=0.7135 \AA, \quad \mu=$ $0.85 \mathrm{~cm}^{-1}, F(000)=1248 \cdot 0, T=298$ (1) K, final $R=$ 0.067 for 1536 observed reflections. The structure has two phenyl rings (I,III), one of which (III) is fused to the furan ring (II). Ring I is perpendicular to III and nearly perpendicular to II, which is in a twist conformation. The $\mathrm{C}(5)-\mathrm{C}(9)$ single bond is shortened [1.491 (10) \AA] owing to the adjacent double bonds.

Introduction. The crystal and molecular structure of the title compound was solved as a part of our program of structure analyses of a group of benzofuran derivatives.

Experimental. Crystals from ethanol; density measured by flotation in benzene-bromoform, crystal size $0.35 \times 0.45 \times 0.45 \mathrm{~mm}$; intensity data collected on an Enraf-Nonius CAD-4 diffractometer using graphite-monochromatized Mo $K \alpha$ radiation; cell
parameters refined by least-squares fitting of the setting angles of 25 high-angle reflections ($14 \leq \theta \leq$ 18°). 2087 independent reflections collected ($-21 \leq h$ $\leq 23,0 \leq k \leq 9,-22 \leq l \leq 23 ; 2 \leq \theta \leq 60^{\circ}$), correction for Lp but not for absorption; space group C2/c or $C c(h k l, h+k$ odd; $h 0 l, h$ and l odd; the space group was shown to be $C 2 / c$ by the structure analysis); structure solved by MULTAN78 (Main, Hull, Lessinger, Germain, Declercq \& Woolfson, 1978); R value was 0.089 after full-matrix least-squares refinement using the program SHELX 76 (Sheldrick, 1976) of all the non-H atoms with anisotropic thermal parameters; all the H atoms located from ΔF synthesis. Each H atom was assigned the isotropic temperature factor of the attached non-H atom; final two cycles of refinement of the positional and anisotropic thermal parameters of the non-H atoms keeping all the parameters of the H atoms fixed with 1536 observed reflections [$I \geq 2 \cdot 5 \sigma(I)$] led to a final $R=$ $0.067, S=1.88$, number of parameters refined $=199$; $\Delta / \sigma<0.05$ in final refinement; residual $\Delta \rho=$ $0.6 \mathrm{e} \AA^{-3}$. Atomic scattering factors from Interna-
(C) 1989 International Union of Crystallography

Table 1. Fractional coordinates and equivalent isotropic temperature factors of non-H atoms with e.s.d.'s in parentheses

	x	z	$U_{\mathrm{eq}}\left(\AA^{2}\right)$	
$\mathrm{O}(1)$	$0.4238(2)$	$-0.2750(4)$	$0.7602(3)$	0.0658
$\mathrm{O}(2)$	$0.4770(3)$	$-0.3009(5)$	$0.8868(3)$	0.0882
$\mathrm{O}(3)$	$0.3291(3)$	$0.4220(6)$	$0.5812(3)$	0.0940
$\mathrm{O}(4)$	$0.3700(3)$	$0.2689(5)$	$0.5338(3)$	0.0833
$\mathrm{C}\left(1^{\prime}\right)$	$0.3860(3)$	$0.0301(6)$	$0.8364(3)$	0.0477
$\mathrm{C}\left(2^{\prime}\right)$	$0.3065(3)$	$-0.0018(8)$	$0.7746(3)$	0.0712
$\mathrm{C}\left(3^{\prime}\right)$	$0.2504(4)$	$0.0403(9)$	$0.7850(4)$	0.0820
$\mathrm{C}\left(4^{\prime}\right)$	$0.2830(4)$	$0.1069(9)$	$0.8574(4)$	0.0777
$\mathrm{C}\left(5^{\prime}\right)$	$0.3645(4)$	$0.1406(8)$	$0.9188(4)$	0.0776
$\mathrm{C}\left(6^{\prime}\right)$	$0.4155(3)$	$0.1001(7)$	$0.9071(3)$	0.0636
$\mathrm{C}(2)$	$0.4518(3)$	$-0.2110(8)$	$0.8327(4)$	0.0639
$\mathrm{C}(3)$	$0.4427(3)$	$-0.0220(7)$	$0.8260(3)$	0.0543
$\mathrm{C}(3 \mathrm{a})$	$0.4132(3)$	$0.0079(6)$	$0.7439(3)$	0.0485
$\mathrm{C}(4)$	$0.3985(3)$	$0.1557(6)$	$0.7046(3)$	0.0507
$\mathrm{C}(5)$	$0.3717(3)$	$0.1406(7)$	$0.6269(3)$	0.0536
$\mathrm{C}(6)$	$0.3599(3)$	$-0.0138(8)$	$0.5933(3)$	0.0614
$\mathrm{C}(7)$	$0.3753(3)$	$-0.1609(7)$	$0.6334(4)$	0.0617
$\mathrm{C}(7 \mathrm{a})$	$0.4026(3)$	$-0.1421(6)$	$0.7095(3)$	0.0546
$\mathrm{C}(8)$	$0.4124(4)$	$0.3167(7)$	$0.7449(4)$	0.0699
$\mathrm{C}(9)$	$0.3542(3)$	$0.2931(8)$	$0.5800(4)$	0.0655
$\mathrm{C}(10)$	$0.3512(5)$	$0.4109(10)$	$0.4824(5)$	0.1225
$\mathrm{C}(11)$	$0.3839(6)$	$0.3738(11)$	$0.4483(6)$	0.1396

Table 2. Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ with e.s.d.'s

in parentheses			
$\mathrm{O}(1)-\mathrm{C}(2)$	1.394 (11)	$\mathrm{C}(6)-\mathrm{C}(7)$	1-385 (9)
$\mathrm{O}(1)-\mathrm{C}(7 \mathrm{a})$	1.394 (7)	$\mathrm{C}(7)-\mathrm{C}(7 \mathrm{a})$	1.386 (11)
$\mathrm{O}(2)-\mathrm{C}(2)$	1.182 (9)	C(9)-O(4)	1.339 (14)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.531 (9)	$\mathrm{C}(9)-\mathrm{O}(3)$	1.197 (9)
C(3)-C(3a)	1.505 (10)	$\mathrm{C}(10)-\mathrm{O}(4)$	1.473 (11)
$\mathrm{C}(3)-\mathrm{C}\left(1{ }^{\prime}\right)$	1.530 (12)	$\mathrm{C}(10)-\mathrm{C}(11)$	1.531 (23)
$\mathrm{C}(3 \mathrm{a})-\mathrm{C}(4)$	1.385 (8)	$\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)$	1.361 (6)
$\mathrm{C}(3 \mathrm{a})-\mathrm{C}(7 \mathrm{a})$	1.368 (8)	$\left.\mathrm{C}(1)^{\prime}\right) \mathrm{C}\left(6{ }^{\text {a }}\right.$	1.367 (9)
$\mathrm{C}(4)-\mathrm{C}(5)$	1.422 (10)	$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}(3)$	1.427 (14)
$\mathrm{C}(4)-\mathrm{C}(8)$	1.491 (9)	$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4{ }^{\text {a }}\right.$)	1.367 (12)
$\mathrm{C}(5)-\mathrm{C}(6)$	1.386 (9)	$\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)$	1.392 (9)
$\mathrm{C}(5)-\mathrm{C}(9)$	$1 \cdot 490$ (10)	$\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}(6)$	$1 \cdot 403$ (14)
$\mathrm{C}(2)-\mathrm{O}(1)-\mathrm{C}(7 \mathrm{a})$	108.0 (4)	$\mathrm{C}(3 \mathrm{a})-\mathrm{C}(4)-\mathrm{C}(5)$	$115 \cdot 7$ (5)
$\mathrm{C}(9)-\mathrm{O}(4)-\mathrm{C}(10)$	1148 (6)	$\mathrm{C}(3 \mathrm{a})-\mathrm{C}(4)-\mathrm{C}(8)$	119.8 (5)
$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{O}(2)$	120.2 (6)	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(8)$	124.4 (5)
$\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{C}(3)$	130.5 (6)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	121.0 (5)
$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	109.2 (5)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(9)$	119.5 (5)
$\mathrm{C}(1)-\mathrm{C}(3)-\mathrm{C}(2)$	$109 \cdot 3$ (5)	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(9)$	119.4 (5)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(3 \mathrm{a})$	1014 (5)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	122.7 (5)
$\mathrm{C}(1)-\mathrm{C}(3)-\mathrm{C}(3 \mathrm{a})$	$116 \cdot 1$ (5)	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(7 \mathrm{a})$	114.9 (5)
$\mathrm{C}(3)-\mathrm{C}(3 \mathrm{a})-\mathrm{C}(4)$	129.9 (5)	$\mathrm{O}(1)-\mathrm{C}(7 \mathrm{a})-\mathrm{C}(3 \mathrm{a})$	112.5 (5)
$\mathrm{C}(3)-\mathrm{C}(3 \mathrm{a})-\mathrm{C}(7 \mathrm{a})$	108.6 (4)	$\mathrm{O}(1)-\mathrm{C}(7 \mathrm{a})-\mathrm{C}(7)$	123.4 (5)
$\mathrm{C}(4)-\mathrm{C}(3 \mathrm{a})-\mathrm{C}(7 \mathrm{a})$	121.5 (5)	$\mathrm{C}(3 \mathrm{a})-\mathrm{C}(7 \mathrm{a})-\mathrm{C}(7)$	124.1 (5)
O(3)- $\mathrm{C}(9)-\mathrm{O}(4)$	122.5 (6)	$\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)$	11888 (5)
$\mathrm{O}(3)-\mathrm{C}(9)-\mathrm{C}(5)$	126.7 (7)	$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)$	117.3 (7)
$\mathrm{O}(4)-\mathrm{C}(9)-\mathrm{C}(5)$	110.8 (6)	$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)$	122-3 9)
$\mathrm{O}(4)-\mathrm{C}(10)-\mathrm{C}(11)$	$106 \cdot 8$ (7)	$\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)$	119.0 (7)
$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}(3)$	117.9 (5)	$\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)$	120.9 (6)
$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)$	121.7 (7)		
$\mathrm{C}(3)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)$	120.4 (6)		

tional Tables for X-ray Crystallography (1974). Final atomic parameters are listed in Table 1.*

[^0]Discussion. The bond lengths and bond angles are listed in Table 2. The conformation of the benzofuran derivative is represented in Fig. 1. The maximum deviations of individual atoms from the mean plane of the ring are -0.013 (7) and $-0.010(8) \AA$ for the $\mathrm{C}\left(4^{\prime}\right)$ and $\mathrm{C}(5)$ atoms in rings I and III. The maximum deviations from the mean value for the endocyclic angles are $5 \cdot 1(5)$ and $2.7(5)^{\circ}$ for the angles $\mathrm{C}(7)-\mathrm{C}(7 \mathrm{a})-\mathrm{C}(3 \mathrm{a})$ and $\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)$. The algebraic sums of the torsion angles are approximately zero in each ring.

Fig. 1. A view of the title molecule with the atom numbering.

Fig. 2. A view of the crystal-packing arrangement.

The $\mathrm{O}(3)$ atom attached to $\mathrm{C}(9)$ by a double bond is nearly cis to $\mathrm{C}(10)[\mathrm{O}(3)-\mathrm{C}(9)-\mathrm{O}(4)-\mathrm{C}(10)$ $\left.-2 \cdot 22(11)^{\circ}\right]$, and is in an endo conformation with the methyl group. Phenyl ring I is perpendicular to phenyl ring III and is nearly perpendicular to the five-membered ring II. The dihedral angles between rings I and III and rings I and II are $90 \cdot 66$ (25) and $93 \cdot 19(27)^{\circ}$. Ring III is almost in the same plane as ring II. The dihedral angle between the mean planes of the five-membered ring II and the six-membered ring III is $2.56(30)^{\circ}$.
The torsion angles of the five-membered ring II are small but they are not zero, showing the nonplanarity of the ring. The puckering parameter φ of 19 (9) ${ }^{\circ}$ calculated for this ring indicates that it assumes one of the ten 'twist' conformations. However, the Z_{j} coordinates $\left(Z_{1}=-0.0005 \simeq Z_{2}+Z_{5}=\right.$ $-0.0162+0.0170 \simeq Z_{3}+Z_{4}=0.0267-0.0270 \simeq 0$) (Cremer \& Pople, 1975) suggest that the conformation is 'twist' with the axis through $\mathrm{C}(7 \mathrm{a})$.
Some shortening is observed for the $\mathrm{C}(5)-\mathrm{C}(9)$ single bond $[1.491(10) \AA]$ owing to its position between two double bonds (Pauling, 1960).
The molecular packing in the crystal structure is shown in Fig. 2. There are no forces other than van
der Waals forces stabilizing the structure. The packing clearly shows that the molecules are arranged in zones with notably less-dense regions in between, which may perhaps explain the tendency for cleavage of the molecule along the (001) plane. There appears to be some overlap of the phenyl rings which possibly stabilizes the structure.

The authors thank Mr D. Chattopadhyay of Saha Institute of Nuclear Physics, Calcutta, for his help during the course of this work.

References

Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Main, P., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1978). MULTAN78. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Pauling, L. (1960). The Nature of the Chemical Bond, 3rd ed. Ithaca: Cornell Univ. Press.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.

Structure of 1-[(R)- α-Methylbenzylamino]-7-[(R)- $\alpha-$ methylbenzylimino $]-$ 1,3,5-cycloheptatriene, H(CHIRAMT), a Ligand used for Enantioselective Conjugate Addition Cuprate Catalysis

By Simon G. Bott, Kwang-Hyun Ahn and Stephen J. Lippard
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

(Received 22 November 1988; accepted 22 March 1989)

Abstract

C}_{23} \mathrm{H}_{24} \mathrm{~N}_{2}, \quad M_{r}=328.46\), orthorhombic, $P 2_{1} 2_{1} 2_{1}, \quad a=5 \cdot 888$ (2),$\quad b=14 \cdot 325$ (3),$\quad c=$ $22.651(5) \AA, V=1911 \AA^{3}, Z=4, D_{m}=1 \cdot 13(1), D_{x}$ $=1.142 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda($ Mo $K \alpha)=0.71069 \AA, \quad \mu=$ $0.62 \mathrm{~cm}^{-1}, \quad F(000)=704, T=295(1) \mathrm{K}, \quad R=0.038$ for 1196 observed reflections with $F>6 \sigma(F)$. The amino proton is intramolecularly hydrogen bonded to the imino nitrogen, thus fixing the compound in the probable conformation adopted in the catalytically active copper complex.

Introduction. The title compound, first prepared by Brunner, Knott, Benn \& Rufinska (1985), has been successfully used as a ligand to synthesize cuprate complexes that catalyze the 1,4-conjugate addition of

Grignard reagents to enones (Villacorta, Rao \& Lippard, 1988). Recent improvements in this reaction chemistry have resulted in enantioselectivities (ee values) of $\sim 80 \%$ (Ahn \& Lippard, in preparation). In order to examine the nature of the stereochemical pocket that might form when (CHIRAMT) ${ }^{-}$coordinates to copper(I), we have determined the crystal and molecular structure of H(CHIRAMT) by X-ray diffraction, the results of which are presented here.

Experimental. Crystals were obtained by the reaction of $(R)-\alpha$-methylbenzylamine with 1 -methoxy- $7-[(R)$ -α-methylbenzyliminoj-1,3,5-cycloheptatriene in anhydrous ethanol followed by recrystallization from methanol/water (Villacorta, Rao \& Lippard, 1988).
© 1989 International Union of Crystallography

[^0]: * Lists of structure factors, anisotropic thermal parameters, H -atom parameters, bond lengths and angles involving H atoms, least-squares planes, and torsion angles have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 52036 (16 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

